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The dynamic response of a nonlinear system is very sensitive to initial conditions. Both
the irrational nonlinearity and the large displacement of a smooth and discontinuous (SD)
oscillator have been studied in this paper. An experimental study has been conducted on
a model of the SD oscillator with different initial conditions and smoothness parameters.
Experimental results indicate that tiny variation in the initial displacement will lead to
different kinds of vibrations, and the system exhibits a wide range of nonlinear dynamical
phenomena with the change of smoothness parameters. All experimental results are in good
conformity with numerical simulation results.
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1. Introduction

Geometric nonlinearity is an important problem often encountered in the sciences and engin-
eering (e.g., truss structures with large deformation or displacement, supporting systems of a
large piece of dynamic equipment, vibration control of precision instruments). Its importance
also extends to practical issues, for instance, building a theoretical model of geometric nonlinear
problems, developing an effective approach to solve these problems, and accurately describing
the global and local dynamic behavior of such systems. The theory of smooth and discontinuous
(SD) oscillators with smooth and discontinuous characteristics was first developed by Cao et al.
(2006, 2008a,b,c). Since then, the SD oscillator as a typical geometric nonlinear system has drawn
much attention from researchers throughout the world. The continuous change of smoothness
parameters achieves a transition between two different characteristics. Further study is required
on the dynamic behavior of the SD oscillator to fully understand the dynamic characteristics of
nonsmooth systems.
In 1973, a simply-supported arch beam as a mass-spring system was proposed by Thompson

and Hunt (1973) for the first time. It was applied to analyze nonlinear geometric problems
successfully, such as buckling. Later on, other research was carried out on the study of nonlinear
dynamic problems from smooth dynamic systems to nonsmooth systems (Filippov, 1988; Kunze,
2000; Shaw and Holmes, 1983).
To solve the transition from the smooth dynamic system to the noncontinuous dynamic

system, Cao, Wiercigroch and others devised an SD oscillator dynamic system whose behavior
depends on the continuous variation of a smoothness parameter α. When α > 0, the system
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is characterized as being smooth; when α = 0, the system is characterized by a discontinuity.
This parameter provides a smooth transition from a smooth dynamic system to a discontinuous
dynamic system (Cao et al., 2006; Cao et al., 2008a,b,c). An early mechanics model of an SD
system is shown in Fig. 1. The differential equation for its motion is

mẌ + 2kX
(

1−
L

√
X2 + l2

)

= F0 cos(ωt) (1.1)

where L is the original length of the spring, and X is the mass displacement.

Fig. 1. Dynamic model of an SD oscillator

In terms of

ω20 =
2k

m
x =
X

L
α =

l

L

Because the negative l makes no sense in the experimental system, so α  0.
Equation (1.1) can be written as

ẍ+ ω20x
(

1−
1√
x2 + α2

)

=
F0
mL
cos(ωt) (1.2)

when α = 0, dynamical system (1.2) is transformed into

ẍ+ ω20 [x− sgn (x)] =
F0
mL
cos(ωt) (1.3)

The discrete system is gained directly by the continuous smooth system through the pa-
rameter α changing to zero. Dynamical system (1.2) and dynamical system (1.3) are referred
to as the SD oscillator, and the disturbance of the vibrator system attractor is called the SD
attractor.
The wealthy nonlinear dynamic behavior of the SD oscillator has been studied in depth.

Different kinetic behavior of the system were shown in the continuous changes of the parame-
ter α (Cao et al., 2008a,b,c). Fork-type bifurcation, single Hopf bifurcation and double Hopf
bifurcation, homoclinic bifurcation, and closed-orbit bifurcation around the equilibrium points
were discussed in (Cao et al., 2008a,b,c; Tian et al., 2010a,b). The response of the SD oscillator
was derived under constant excitation (Tian et al., 2012). Han et al. (2012) and Cao et al. (2012)
studied the strong irrational nonlinear oscillator stability and bifurcation. By constructing both
an elliptic function and a hyperbolic function, the analytical solution was obtained. The SD sys-
tem with contact and friction constraint nonlinear dynamic behavior was been studied (Légar et
al., 2012; Zhang et al., 2014). However, most of those theoretical studies were conducted through
numerical simulations or analytical methods, and few scholars conducted the research by con-
structing an experimental system. An experimental system to research the dynamical behavior
of the SD oscillator has been constructed in this paper.
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The literature about constructing the corresponding experimental system with nonlinear
dynamics to study nonlinear behavior is sparse. By constructing a small building model with
characteristics of a single potential well, a nonlinear vibration response was studied (Gourdon
et al., 2007). The dynamical characteristics of a shock absorber with cubic nonlinear stiffness
coefficients and two-degree-of-freedom were studied experimentally. The mechanical model of the
system contained description of how a quasi-zero stiffness characteristic is achieved (Gatti et al.,
2010). The nonlinear vibration of a viscoelastic belt was been studied experimentally (Zhang et
al., 2007). However, owing to the difficulty in selecting parameters and designing an experiment,
the relevant dynamic experimental research of the SD oscillator yielded fewer results. So the
experimental system was constructed to study nonlinear phenomena of the SD oscillator.
Based on the homemade SD experimental system of kinetic characteristics, this article focuses

on the influence of the initial value and smoothness parameters and the SD system nonlinear
motion state, verifying many nonlinear dynamic phenomena calculated by numerical simulation.
The results reveal sensitivity and complexity of the transition parameter existing in the nonlinear
system.

2. SD oscillator experimental system

2.1. Experimental device

In this paper, an experimental model with SD oscillator characteristics is designed based
on the early simplified mechanical model of the SD oscillator comprising an initial arch beam
shown in Fig. 2.

Fig. 2. SD oscillator experimental system

In the experimental SD oscillator device, the upper and lower ends of the oscillator centroid
are fixed with spring connecting rods. The connecting rod and the spring are provided with a
sheath that is rotatable about the rod. In addition, the upper and lower springs are arranged
symmetrically and the other end of the spring is connected to a hinged post. According to the
experimental requirement, the connection l can be adjusted by moving the clamped screw along
the centerline of the post to obtain different values of the smoothness parameter α. Moreover,
the oscillator is installed in a horizontal guide rod. To reduce friction damping, the vibrator is
fitted with a linear sliding bearing. The spring connecting post and the horizontal guide bracket
are rigidly connected to the baseplate (as shown in Fig. 2), and the whole experimental device
is fixed to the level of the vibration table.

2.2. Laboratory equipment and experimental processes

The SD oscillator experimental system is fixed onto an electric vibration table and a hori-
zontal sliding table. The oscillator can slide linearly along the horizontal guide rod. Stretching
deformation of the spring connecting the SD oscillator only occurs in the process of oscillator
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movement. The main equipment of the experiment comprises ES-10 electric vibrating table,
SD-PUMA vibration controller, CA-YD-186 acceleration transducer, and LKG-3001 laser di-
splacement meter. The displacement of the oscillator during its movement is simultaneously
measured by the laser displacement meter.
The experiment consists of three parts:

(1) Ascertain the stiffness, damping, natural frequency and other kinetic parameters of the
system by damped free vibration, providing the basis for the simulation of the experimental
system.

(2) Observe the status of the oscillator system responding to driving forces under through
experiments in different initial positions.

(3) Research the vibrator nonlinear motion characteristics of the system under different con-
ditions of excitation parameters by changing smoothness parameters of the system.

3. Differential equations of motion of the SD oscillator and numerical analysis

Based on the SD oscillator experiment, a corresponding model of the experimental apparatus
was built as shown in Fig. 3.

Fig. 3. SD oscillator experimental model

The absolute displacement of the oscillator is given by

Z = X + Y (3.1)

where X is the relative displacement of the oscillator m for the fixed support, Y is the impli-
cated displacement of the horizontal sliding table of the vibrating table. Then, the undamped
differential equation of motion for the SD oscillator is

m(Ẍ + Ÿ ) + 2k
(

√

X2 + l2 − L
) X
√
X2 + l2

= 0 (3.2)

If we assume that the damping system is viscous and that the damping coefficient is c, the
motion amplitude is A, and the frequency is ω, then Y = A cos(ωt), and the damped differential
equation of motion for the SD oscillator is

mẌ + cẊ + 2kX
(

√

X2 + l2 − L
) 1√
X2 + l2

= mAω2 cos(ωt) (3.3)

If we let

α =
l

L
x =
X

L
ω20 =

k

m
t =
τ

ω0



Experimental study of the nonlinear dynamics... 939

where ω0 is the natural frequency of the system, then equation (3.3) becomes

x′′ +
c

mω0
x′ + 2x

(

1−
1

√
x2 + α2

)

=
Aω2 cos ωτ

ω0

Lω20
(3.4)

Then the SD oscillator equation of motion is given by (3.5)

x′′ + ηx′ + 2x
(

1−
1

√
x2 + α2

)

= F0 cos
ωτ

ω0
(3.5)

where η = c/(mω0) and F0(ω) = Aω
2/(Lω20). Let the disturbance of the SD oscillator equation

of motion (3.5) be written as the state equations

x′ = y y′ = −ηy − 2x
(

1−
1

√
x2 + α2

)

+ F0 cos
ωτ

ω0
(3.6)

When α > 1, the corresponding system has a stable equilibrium (center). It is a single well
system. When α < 1, the corresponding system exists as three balance points, including two
stable equilibrium points (center) and an unstable equilibrium point (saddle point) situated at
the boundary of two attractor domains. The system is a double well system. According to Fig. 4,
the attractor of the SD oscillator is a stable equilibrium point.

Fig. 4. Phase diagram in the displacement-velocity for the unperturbed system: (η = 0, F = 0,
0 < α < 1)

3.1. Influence of initial value on the SD oscillator system

The same parameters are applied in numerical calculations and experiments. The oscillator
mass m is assumed to be 2.63 kg and it is connected by four springs. Each spring is 0.0544 kg,
with stiffness K of 500N/m, and an unstretched length L of 0.12m. Moreover, the damping c
is obtained by the attenuation vibration curve, by taking c = 3060Ns/m.
To study the SD oscillator system sensitivity to the initial value, a numerical simulation of

the vibration response of the system was conducted according to the given parameters in the
experimental scheme. By making use of a time-domain plot, frequency-domain plot, oscillator
phase track diagram, Poincaré cross section figure is made to analyze the simulation results.
The smoothness parameter α is set to 0.67, the excitation amplitude A is set to 0.03m, and
the excitation frequency f is set to 3Hz. The displacement of the origin of the SD oscillator is
calculated as the distance X of the oscillator from the spring original length to the distance of
the two connections stud attachment points O. As shown in Fig. 3, when the oscillator system
is in the state of static balance, X = 0.090m. Then the initial velocity is V = 0.565m/s and
the selected initial displacement values used in the simulation calculation are X0 = 0.090m,
X0 = 0.0925m, and X0 = 0.095m, respectively. When X0 = 0.090m, the simulation result is
shown as Fig. 5a.
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Fig. 5. SD oscillator movement response (α = 0.667, m = 2.63kg, L = 0.120m, K = 500N/m,
c = 3060Ns/m, f = 3Hz, A = 0.030m, V = 0.565m/s, l = 0.080m): (a) X0 = 0.090m,

(b) X0 = 0.0925m, (c) X0 = 0.095m; 1 – time domain, 2 – frequency spectrum diagram, 3 – phase
diagram, 4 – poinkale section

From the simulation results one can see that the response in the time domain of the SD
oscillator is an irregular curve and the response in the frequency domain is continuous. The
phase trajectory exhibits quasi-random characteristics, and the Poincaré map indicates an SD
attractor. Obviously, the system is in a state of chaotic movement at this time.
When other parameters are held constant, with the initial displacement X0 = 0.0925m,

the oscillator deviates from the equilibrium position, sliding along the guide bar by 0.0025m.
The simulation result is shown in Fig. 5b. In this circumstance, the oscillator system responds
to periodic motion, and the fundamental frequency of the spectrum is 1/3 of the excitation
frequency. The spectrum and the Poincaré section are displayed as period-3 motion.

When other parameters are held constant, and the initial displacement is X0 = 0.095m, the
oscillator again deviates from the equilibrium position, sliding along the guide bar by 0.005m.
The simulation result is shown in Fig. 5c. At this time, system is undergoing cycle (period-1)
movement.
The result of the numerical simulations shows that the SD system has strong sensitivity

to the initial value. When smoothness parameters and external forces are kept the same, small
changes in the initial displacement can drive the SD oscillator system into three different motion
states.

3.2. Influence of smoothness parameters on the SD oscillator motion state

The SD oscillator smooth characteristic parameter reflects the system of smooth and conti-
nuous features.
To study the effect of smoothness parameter variation on motion of the oscillator system,

we choose the smoothness parameter α of the corresponding system to 0.667, 1, and 1.08, re-
spectively, then l was set to 0.08, 0.12, and 0.13m, respectively. At this time, the corresponding
damping values c for the system were 3.004, 0.371, and 0.679, respectively, and the other pa-
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rameters remained constant. The excitation amplitude was set to 0.03m and the excitation
frequency f was 1.5-6 Hz. The bifurcation diagrams of the system under these four parameters
obtained by the simulation are shown in Fig. 6

Fig. 6. Bifurcation diagram for displacement versus frequency (X0 = 0.0925m, m = 2.63 kg,
K = 500N/m, A = 0.03m, V = 0.565m/s, f = 1.5-6Hz): (a) α = 0.67, (b) α = 1.0, (c) α = 1.08

Fig. 7. SD oscillator movement response as f = 3Hz (X0 = 0.0925m, m = 2.63 kg, K = 500N/m,
A = 0.030m, V = 0.565m/s): (a) α = 0.67, (b) α = 1.0, (c) α = 1.08; 1 – time domain, 2 – frequency

spectrum diagram, 3 – phase diagram, 4 – poinkale section

One can conclude from these diagrams that the smoothness parameter has a great influence
on the bifurcated structure of the SD system. Meanwhile, depending on the value of the smooth-
ness parameter, the corresponding system exhibits four types of motion: periodic motion, double
periodic motion, periodic bifurcation motion, and chaotic motion, thus demonstrating abundant
nonlinear dynamic phenomena.

When the excitation amplitude remains constant and the excitation frequency increases to
3Hz, the system response for the above three of smoothness parameters is shown in Fig. 7.
According to Fig. 7 and the bifurcation diagram, when α = 0.67, the system is undergoing

period-5 movement and the oscillator has a 1/5 subharmonic resonance; when α = 1.0, a critical
system appears with coexisting multiple solutions. There is a syntonic response that is the same
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as the external excitation frequency in the low-frequency chaotic solution, and the amplitude
of the system response is also small. This system can ably inhibit the input excitation. When
α = 1.08, the oscillator exhibits period-1 movement.

If one continues to increase the excitation frequency to 5Hz, the system responses of the
four groups above under the same smoothness parameter are shown as Fig. 8.

Fig. 8. SD oscillator movement response as f = 5Hz (X0 = 0.0925m, m = 2.63 kg, K = 500N/m,
A = 0.030m, V = 0.565m/s): (a) α = 0.67, (b) α = 1.0, (c) α = 1.08; 1 – time domain, 2 – frequency

spectrum diagram, 3 – phase diagram, 4 – poinkale section

According to Fig. 8 and the bifurcation diagram, when α = 0.67 and the excitation frequency
is 5Hz, the system is in the state of chaotic motion. When α = 1.0, the critical system is in a
mixed state of quasi-periodicity, and the period-1 movement and the amplitude of the system
response is also small. When α = 1.08, a 1/3 subharmonic resonance occurs in the system.

4. Experimental analysis of SD oscillator nonlinear motion

To verify the numerical simulation results, an experimental study of the SD oscillator was con-
ducted. First, the experimental setup was fixed onto the electric vibration table level slider. The
length L of the spring was 0.120m and the horizontal distance between the two ends of the
spring was 2l = 0.1608m. The SD oscillator was initially located at a stable equilibrium point
and the two stable equilibrium points were 180mm apart. The central point of the oscillator
and saddle point is presented in Fig. 4. By using the laser displacement sensor, the movement
of the SD oscillator could be captured. Then, MATLAB was applied to analyze the captured
oscillator displacement time series.

According to the experimental requirements, the distance of the upright rod that connects
the oscillator and the springs can be adjusted. The smoothness parameter of the system was also
changeable. To facilitate comparison with the simulation calculation results, the experimental
system for parameter selection was in accordance with the simulation calculation parameters.
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4.1. Influence of initial value on the SD oscillator system

The initial value of the oscillator movement affects the experiment. By choosing the smooth-
ness parameter α as 0.67, the excitation amplitude A as 30mm, the vibration excitation frequen-
cy as 2.95Hz, and the initial velocity of the oscillator as 56.5 cm/s, experiments were conducted
for the case of oscillator initial displacements X0 of 90, 92.5, and 95mm, separately. Then the
oscillator response data were collected when the oscillator initial displacement was constant and
the oscillator motion was stable. Finally, the oscillator response could be converted to a graph
from the data.

From the graphs in Fig. 9, one can see that the state of the system motion is different
when the initial value is changed. For example, chaotic movement, similar period-3 movement,
and similar period 1 movement are shown in Fig. 9. The experimental results and those of the
simulation calculation are basically identical. The experimental results show that a tiny change
in the initial displacement makes the SD oscillator system exhibit three different motion states
when smoothness parameters and external forcing conditions are the same. Meanwhile, the stable
solution of the system and the initial value have a strong relationship.

Fig. 9. SD oscillator movement testing response as f = 2.95Hz (m = 2.63 kg, L = 0.12m, K = 500N/m,
c = 3060Ns/m, A = 0.03m, V = 0.0565m/s, l = 0.08m): (a) X0 = 0.090m, (b) X0 = 0.0925m,
(c) X0 = 0.095m; 1 – time domain, 2 – frequency spectrum diagram, 3 – phase diagram,

4 – poinkale section

Because the accuracy of the experimental model is limited, the excitation frequency deviation
is slight at a similar motion state. At the same time, chaotic motion is a seemingly random
movement, so through an experiment it is difficult to ensure that, at the end of each cycle, the
oscillator is exactly at the same motion state. After several vibrations, the response of the system
state will deviate from the theoretical value but the motion properties are basically identical.

4.2. Influence of smoothness parameters on the oscillator motion state

SD oscillator dynamical behavior depends on the continuous variation of the smoothness
parameter. The system exhibits discontinuous characteristics when α = 0, but an experimental
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system is difficult to achieve when α = 0. This article focuses on the motion response of the
system when α > 0. The parameters of the experimental system are the same as those of the
numerical simulation. The SD oscillator system was subjected to the vibration excitation of
vibration table and then the vibration was started. To study the influence of the smoothness
parameter, α = 0.67, 1.0, and 1.08 were selected for the experiment. When the vibration fre-
quency of the vibration table was f = 3Hz, the motion data of the sample were analyzed, and
the system response is shown in Fig. 10.

Fig. 10. Oscillator movement testing response as f = 3Hz (m = 2.63kg, L = 0.12m, K = 500N/m,
c = 3060Ns/m, A = 0.03m, V = 0.0565m/s, l = 0.08m): α = 0.67, (b) α = 1, (c) α = 1.08; 1 – time

domain, 2 – frequency spectrum diagram, 3 – phase diagram, 4 – poinkale section

As seen in Fig. 10, when the smoothness parameter α = 0.67 and α = 1.08, the system
undergoes period-5 and period-1 movement, respectively. And when α = 1, a periodic solution
and chaos coexist in the critical system. The oscillator amplitude is small and the system has a
good inhibitory effect on the external excitation. The experimental results and simulation results
are basically identical.

If one continues to increase the excitation frequency of the vibrating table to 5Hz, the stable
motion responses of the two groups of smoothness parameters of subsystem vibration are shown
in Fig. 11.

According to Fig. 11, the excitation amplitude is 30mm and the excitation frequency is
5Hz. When α = 0.67, the system is in chaotic motion. When α = 1.0, the oscillator response
amplitude is small, and the system exhibits a low-frequency peak and quasi-periodic motion.
The system has a good inhibitory effect on the external excitation. The experimental results and
numerical simulation calculation results are basically the same. When α = 1.08, the oscillator
gains a large amount of energy and the response amplitude exceeds the experimental model
design, so valid data could not be collected.
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Fig. 11. The chaotic motion of the SD oscillator movement testing response (f = 5Hz, m = 2.63kg,
L = 0.12m, K = 500N/m, c = 3060Ns/m, A = 0.03m, V = 0.0565m/s, l = 0.08m): (a) α = 0.67,

(b) α = 1.0; 1 – time domain, 2 – frequency spectrum diagram, 3 – phase diagram, 4 – poinkale section

5. Conclusions

The geometric nonlinear large deformation characteristics of an SD oscillator were detected.
Influence of the initial value and smoothness parameters on the nonlinear oscillator system was
discussed via numerical and experimental research. The smoothness parameter of the experi-
mental system can be adjusted by changing the geometric shape. The system can be used to
study the nonlinear dynamic response of the SD oscillator under different excitation amplitudes
and frequencies.

As a nonlinear system, the SD oscillator, under the action of external excitation, exhibited
nonlinear characteristics that were strongly sensitive to the initial value. Small changes of the
initial displacement led to entirely different motion states. The system presented a complex, rich
dynamic behavior, including both periodic and chaotic motion.

Changing the smoothness parameter α determined the dynamic behavior of the system.
SD oscillator systems with different excitation frequency parameters under certain parameter
conditions exhibited different dynamic characteristics, ranging from cyclic motion to chaotic
motion, to quasi-periodic motion, and other complicated nonlinear dynamic phenomena.

The response characteristics of the SD experimental system were basically identical to those
found through numerical simulation under the corresponding parameters. Several typical nonli-
near response characteristics of the numerical solution replicated the corresponding performance
aspects observed in the experiment and the transition rules between various states were the sa-
me. In the experiments, the system appeared to exhibit transient chaos, with the oscillator
performing complicated nonlinear motion between two attractor domains.

With the increase of excitation frequency, the response of the system became complex and
rich. With the increase of system energy, the oscillator changed from small periodic motion
to large periodic motion and from cyclic motion to chaotic motion. Especially, the transitions
between periodic chaotic motion showed that there were bifurcation motions in the system,
which was verified by numerical calculation.
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